The Effects of Core Geometry Manipulation of 3D Printed Rocket Fuel

Daniel Rust
Mentor: Dr. John Rajadas
Daedalus Astronautics
NASA Space Grant Symposium
(University of Arizona) – April 14, 2018
What I have Done

- Overview
- Production of samples
 - Modeling
- Production results
- Testing of fuel grains
- Final thoughts
3D printed Rocket fuel

• Three types of Rocket fuel: solid, liquid, and hybrid
• Hybrids offer unique opportunity to 3D print fuel
• Standard Hybrid fuel is Hydroxyl-terminated polybutadiene (HTPB)
• 3D printed Acrylonitrile butadiene styrene (ABS) alternative
 • Not as good as HTPB
 • Complex Geometry of core could alleviate this
Production of Samples

• ABS 3D printed grains
• Single and double helix core geometry
• SolidWorks modelling
• 3D printing: 10+ hours
• Post processing in Acetone
Production of samples

- Modelled in MATLAB for maximizing volume and surface area.
- Conclusion:
 - .2 in Helix radius
 - 2 rotations
 - 2 in pitch
 - .2 in circumference of helix
Testing of Fuel Grains

• Testing:
 • 12 test fires: 3 HTPB grains, 3 ABS straight core, 3 ABS single helix, 3 ABS double helix.
 • Regression rate, and thrust measurements

• Testing has been a struggle
 • National shortage of Nitrous oxide (oxidizer)
Conclusion and Recommendations

• Production Process
 • Longer and harder than anticipated
• A combination of grains HTPB and ABS may be a viable option.
 • ABS skeleton and HTPB filling.
• Future testing
 • Possible other cores
 • Multi-material 3D Printed fuel
 • Molding
Thank You

Any Questions?